Stochastic AUC Optimization Algorithms With Linear Convergence
نویسندگان
چکیده
منابع مشابه
Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory
We develop a family of reformulations of an arbitrary consistent linear system into a stochastic problem. The reformulations are governed by two user-defined parameters: a positive definite matrix defining a norm, and an arbitrary discrete or continuous distribution over random matrices. Our reformulation has several equivalent interpretations, allowing for researchers from various communities ...
متن کاملStochastic Online AUC Maximization
Area under ROC (AUC) is a metric which is widely used for measuring the classification performance for imbalanced data. It is of theoretical and practical interest to develop online learning algorithms that maximizes AUC for large-scale data. A specific challenge in developing online AUC maximization algorithm is that the learning objective function is usually defined over a pair of training ex...
متن کاملStochastic Optimization Algorithms
When looking for a solution, deterministic methods have the enormous advantage that they do find global optima. Unfortunately, they are very CPU intensive, and are useless on untractable NP-hard problems that would require thousands of years for cutting-edge computers to explore. In order to get a result, one needs to revert to stochastic algorithms that sample the search space without explorin...
متن کاملConvergence Analysis of Optimization Algorithms
The regret bound of an optimization algorithms is one of the basic criteria for evaluating the performance of the given algorithm. By inspecting the differences between the regret bounds of traditional algorithms and adaptive one, we provide a guide for choosing an optimizer with respect to the given data set and the loss function. For analysis, we assume that the loss function is convex and it...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Applied Mathematics and Statistics
سال: 2019
ISSN: 2297-4687
DOI: 10.3389/fams.2019.00030